Experimental Results, Status and Prospects of a Helicon-driven, Converter-type H⁻ Ion Source

Olli A. Tarvainen* and Roderich Keller

AOT-ABS Group at Los Alamos National Laboratory Los Alamos, NM, USA *Current address: Jyväskylä University, Finland

RF Ion Source Workshop, Sept. 28-29, 2009

Oak Ridge, TN, USA

LA-UR 09-05974.

Slide 1

Performance Parameters

For LANSCE Helicon-based Ion Source

Future performance goals for LANSCE H⁻ source

- 28 mA H⁻ beam current
 - 0.15 π mm mrad normalized 1- σ emittance
- 10.5% duty factor
 - 120 Hz repetition rate
 - 865 μs pulse length
- 4 weeks operation between services

Current performance of filament-driven source

- 16.5 mA H⁻ beam current
 - 0.15 π mm mrad norm., 1- σ emittance
- 5.3% duty factor
 - 60 Hz repetition rate
 - 865 µs pulse length

4-5 weeks operation between services

O. A. Tarvainen and R. Keller, 2009

Slide 2

Helicon approach

- Helicon generators were developed for space propulsion systems
 - Wide-spread use in industrial applications
 - Resident expertise at ORNL and LANL
 - Proof-of-principle helicon device tested at LANL before converter-helicon work
- Plasma density \ge 1 x 10¹³ cm⁻³
 - With very high power efficiency

External antenna

- Quartz or alumina wall of discharge vessel acts as insulator
- Promise of "unlimited lifetime"
- Original double-helical antenna shape only needed for m=1 mode
- Helicon mechanism requires axial magnetic field
 - Moderate field strength
 - Created by permanent magnets

100 G at location of antenna for m=0 mode

O. A. Tarvainen and R. Keller, 2009

Slide 3

LANL Converter Helicon

As H⁻ ion source

Combined with standard LANSCE converter source

- Suggested by R. Welton, ORNL
- Helicon plasma generator replacing filaments and discharge power

Operated by Los Alamos National Security, LLC for NNSA

Slide 4

LANSCE Converter-Helicon Parameters

- Axial magnetic field created by permanent magnets
 - 100 G at location of antenna (m = 0 mode of operation)
 - Permanent magnet ring in repeller electrode adding to this field
 - Removes most electrons from H⁻ beam
 - Creates 200-G field hump near outlet aperture
- 13.56 MHz rf frequency
- Capacitive impedance-matching circuit
- 1 20% reflected power with stable discharge
- 250 350 V converter bias with respect to outlet flange
- 9.8-mm diameter outlet aperture
- Newly designed cesium oven
 - Transfer tube hotter than oven itself
 - Prevents re-condensation and subsequent cesium bursts
 - Coating of chamber walls by cesium would lead to high reflected rf power

NATIONAL LABORATORY

O. A. Tarvainen and R. Keller, 2009

Slide 5

New Cesium Oven Layout

Standard oven

New oven

O. A. Tarvainen and R. Keller, 2009

Slide 6

Test Stand Layout

- 80-kV extraction
- 2-solenoid LEBT
- **2** emittance stations

Test Results

O. A. Tarvainen and R. Keller, 2009

Slide 8

Observed Trends

- H⁻ beam current increases with increasing power
 - Jump at 1 1.8 kW (onset of m=0 helicon mode)
 - Power increase requires cesium-flow increase
 - Compensate for higher ablation rate
 - Power increase requires gas pressure increase to control reflected
 power
- H⁻ beam current increases with decreasing gas pressure for constant rf power
 - Reduction of H⁻ stripping losses in discharge plasma
 - Cesium flow has to be reduced as well
 - 7 8 mTorr is lower limit (excessive ignition delay)
 - No significant gas starvation observed
 - Less than 10% fading over 865 μ s pulse length

High cesium flow facilitates discharge ignition

- Affects matcher settings
 - Increases reflected power
 - Not optimal for beam-current output

O. A. Tarvainen and R. Keller, 2009

Slide 9

Outlook (1)

- Minimum gas-pressure limit for ignition is most severe restriction for raising beam current
 - Stripping losses for generated H⁻ ions are fairly high
 - Could reduce distance of converter from outlet

Operated by Los Alamos National Security, LLC for NNSA

Slide 10

Outlook (2)

- Reduction of gas pressure is next goal
- Avoid gas starvation during pulses
 - Larger vessel (upstream of converter)
 - Pulsed gas feed
 - Would require much longer rf pulses
 - Have to let pressure decay from initial value
 - Developed and briefly tested $150-\mu s$ gas injector at 60 120 Hz

Facilitate pulse ignition by spark source in gas-feed line

- Tesla coil igniting neutral gas at fairly high pressure
- Successful preliminary tests with pure hydrogen
 - Reduced pressure in source from 8 to 4 mTorr or less
- Optimize magnetic field near repeller
 - Conflicting trends when lowering fields
 - Better ion transport

O. A. Tarvainen and R. Keller, 2009

Slide 11

Outlook (3)

Simulated effect of repeller magnetic field on beam footprint

- 3.5 kG currently used, lower field improves transport
- But: lower field appears to reduce plasma density

Outlook (4)

- Encouraging preliminary test results
 - 1.5x current increase would match standard source performance
- Several options for improvements identified
- No emittance results obtained
 - Expecting similar values as with standard source
 - 0. 15 π mm mrad 1- σ normalized
- Duty factor lower than needed for LANSCE
 - 2x 4x increase desirable
- Reliability not yet acceptable needs better packaging
- Currently no firm plans to continue this development
 - Lack of personnel
 - Lack of budget

O. A. Tarvainen and R. Keller, 2009

Slide 13

Acknowledgments

 Experimental work and modeling calculations were performed by O. A. Tarvainen during his postdoc assignment at Los Alamos National Laboratory

Other contributors

- E. Geros, LANL
- G. Rouleau, LANL
- T. Zaugg, LANL
- M. Light, LANL
- R. Welton, ORNL
- R. Goulding, ORNL

O. A. Tarvainen and R. Keller, 2009

Slide 14

